Definitions
-
the present invention
relates to a mica tape that is wound a plurality of times around the outer circumferential surface of a conductor of an electrical rotating machine coil so as to form an electric insulating layer, to an electrical rotating machine coil prepared by winding the mica tape around the electrical conductor so as to form a good insulating layer having a good heat conductivity, and to an electrical rotating machine using the electrical rotating machine coil.
-
a coil
is used as a stator winding or a rotor winding in an electrical rotating machine such as a dynamo or an electric motor.
-
the coil
is prepared by winding a plurality of times a mica tape around an electrical conductor formed of, for example, a flat element wire having a rectangular cross section so as to impart electrical insulating properties to the coil, followed by heating under pressure the mica tape together with an adhesive resin so as to form an integral structure of an insulating layer.
-
FIG. 7
is a cross-sectional view exemplifying the construction of a stator coil of an electrical rotating machine including an insulating layer formed of the conventional mica tape.
-
a slot 53
is formed in a stator core 51 prepared by laminating a plurality of electromagnetic steel plates one upon the other.
-
a stator coil 52 formed of an element wire having a rectangular gross section
is housed in the stator core 51 .
-
the stator coil 52
comprises a conductor portion 52 a and an insulating layer 52 b formed around the conductor portion 52 a .
-
the stator coil 52
has a double layer structure including an upper coil and a lower coil. In this case, however, the stator coil 52 alone is shown as the lower coil in the drawing for the sake of brevity. It should be noted that under the lower coil 52 is arranged a spacer 54 in a space between the lower coil 52 and the bottom portion of the slot 53 .
-
an insulating layer 52 b
is formed around the conductor portion 52 a in order to avoid an accident such as the ground short-circuit caused by the applied high voltage.
-
a mica tape 61
having a cross-sectional structure as shown in FIG. 8 around the conductor portion 52 a , followed by heating the mica tape under pressure so as to form an integral structure of the insulating layer 52 b excellent in the electrical insulating properties.
-
the mica tape 61
comprises a mica layer 63 including a plurality of scale-like mica foils 62 that are laminated one upon the other so as to form a layer-like structure and a glass cloth 64 laminated below the mica layer 63 for reinforcing the mica layer 63 .
-
the glass cloth 64
is prepared by weaving glass fibers 65 in vertical and lateral directions. Mica is widely used as a material excellent in electrical insulating properties. However, since the bonding strength among the scale-like mica foils is weak, it is difficult to use a tape prepared by simply bonding the mica foils for the fastening purpose.
-
the glass cloth 64 prepared by vertically and laterally weaving the glass fibers 65
is included for the reinforcing purpose in the mica tape 61 so as to make it possible to use the mica tape 61 to be wound around the conductor portion 52 a with a high tension.
-
Joule heat generation
can be removed by the cooling with, for example, a hydrogen gas or the air. In any case, it is necessary to remove the heat from the conductor portion 52 a via the insulating layer 52 b.
-
a mica tape containing aluminum oxide as an inorganic filler having a high heat conductivity
is disclosed in, for example, Japanese Patent Disclosure (Kokai) No. 2003-9446.
-
Inorganic fillers excellent in the heat conductivity
also include aluminum nitride and silicon nitride in addition to the aluminum oxide noted above.
-
any of the inorganic fillers excellent in the heat conductivity exemplified above
has a high hardness.
-
aluminum oxide
has a Mohs hardness of 12.
-
the glass cloth 64 prepared by weaving the glass fibers 65
is used for reinforcing the mica tape 61 .
-
glass
has a Mohs harness of about 7.
-
aluminum oxide having a Mohs hardness of 12
as a filler, it was possible for the aluminum oxide to damage the glass cloth 64 particularly at the corner portion of the conductor when the mica tape is wound about the conductive wire having a rectangular cross section, with the result that the glass cloth 64 is broken, leading possibly to the breakage of the mica tape.
-
the mica tape
is wound a plurality of times about the element wire having a rectangular cross section.
-
the compressive strength applied within the mica tape
is increased, with the result that the planar pressure applied between the glass cloth and the inorganic filler is also increased.
-
the mica tape
tends to be broken easily so as to make it impossible to increase the tension as much as required.
-
a gap
is generated between the formed insulating layer and the surfaces of the wire element having a rectangular cross section. Such being the situation, the heat dissipation and the insulating properties were not sufficiently satisfactory.
-
An object of the present invention
is to provide a mica tape, which is not broken even if the tape is wound about a conductive portion while applying a prescribed tension to the tape and which permits forming an insulating layer that fully exhibits the characteristics of the inorganic filler, to provide an electrical rotating machine coil using the mica tape and to provide an electrical rotating machine comprising the electrical rotating machine coil.
-
a mica tape according to an aspect of the present invention
comprises a mica foil layer, a glass cloth and an inorganic filler particle layer arranged on the glass cloth.
-
the mica tape
is wound a plurality of times about the outer circumferential surface of a conductor portion of, for example, an electrical rotating machine coil so as to form an insulating layer for the coil.
-
the inorganic filler noted above
has a high heat conductivity. It is possible to use a single kind of an inorganic filler having a high heat conductivity or a Mohs hardness equal to or smaller than that of the glass used in the glass cloth.
-
inorganic fillers
having a high heat conductivity and a Mohs hardness equal to or smaller than that of the glass used in the glass cloth. It is desirable for the inorganic filler to have a heat conductivity equal to or superior to that of the mica foil and the glass cloth.
-
an inorganic filler excellent in the thermal conductivity and having a Mohs harness not higher than that of the glass cloth to form a mica tape according to the present invention
added to the glass cloth.
-
the mica tape
is wound about the conductive portion while applying a prescribed tension to the mica tape, the mica tape is not broken.
-
an electrical rotating machine coil
is formed by winding a plurality of times the mica tape of the present invention about a coil conductor, it is possible to miniaturize the electrical rotating machine coil as well as the electrical rotating machine and to improve the reliability of the electrical rotating machine, compared with the conventional electrical rotating machine.
-
FIG. 1
is a cross-sectional view showing the construction of a part of the mica tape used for forming an insulating layer of a stator coil of an electrical rotating machine according to one embodiment of the present invention
-
FIG. 2
is a view showing the winding properties of the mica tape according to the present invention with respect to a coil conductor in comparison with the conventional mica tape;
-
FIG. 3
is a cross-sectional view showing the construction of a part of the mica tape according to another embodiment of the present invention.
-
FIG. 4
is a cross-sectional view showing the construction of a part of the state that a mica tape according to another embodiment of the present invention is wound about a coil conductor;
-
FIG. 5
is a cross-sectional view showing the construction of a stator coil according to still another embodiment of the present invention, the stator coil being housed in a slot of a stator core of an electrical rotating machine formed by using the mica tape shown in FIG. 1 ;
-
FIG. 6
is a cross-sectional view showing partly the construction of an electrical rotating machine according to still another embodiment of the present invention, the electrical rotating machine including the stator coil shown in FIG. 5 ;
-
FIG. 7
is a cross-sectional view showing the construction of a stator coil arranged within the stator core included in the conventional electrical rotating machine.
-
FIG. 8
is a cross-sectional view showing partly the construction of the conventional mica tape for forming an insulating layer around the stator coil shown in FIG. 7 .
-
FIG. 1
is a cross-sectional view showing the construction of a mica tape according to a first embodiment of the present invention.
-
the mica tape 11 shown in FIG. 1
comprises a mica layer 13 including scale-like mica foils 12 arranged to form the layer, a glass cloth 14 laminated on the lower side of the mica layer 13 , and an inorganic particle layer 16 added to the glass cloth 14 .
-
the glass cloth 14
is prepared by weaving warps 15 a and wefts 15 b each obtained by stranding a plurality of glass fibers. These warps 15 a and wefts 15 b are woven at a prescribed density. In the embodiment shown in the drawing, 8 warps 15 a and 8 wefts 15 b are arranged in the vertical and lateral directions so as to weave the glass cloth 14 .
-
a quartz glass having a Mohs hardness of 7
is used as a glass material used for forming the glass fiber.
-
the density, the tensile strength, etc. of the glass cloth
are defined in, for example, JIS R3414.
-
the density
is classified by the thickness of the single yarn used, which is represented by the number n (n/25 mm) of single yarns that can be put within a clearance of 25 mm.
-
the tensile strength
is determined in conjunction with the density noted above.
-
the density and the tensile strength of the glass cloth 14
is determined in each of the vertical direction and the lateral direction of the glass cloth.
-
thermosetting adhesive resin
used in this step was prepared by allowing the glass cloth 14 to be impregnated with a mixture obtained by mixing inorganic filler particles with an epoxy resin containing an acid anhydride curing agent, e.g., Epicoat 828 or 1001 manufactured by Yuka shell K.K. Then, the epoxy resin composition is converted into a semi-hardened state (conversion into B-stage) so as to form the state of a prepreg.
-
quartz having a Mohs hardness of 7
is used as a glass material for forming the glass cloth 14 . Therefore, it is possible to use a single kind of an inorganic filler having a Mohs hardness not larger than 7 or a mixture of a plurality of inorganic fillers having a Mohs hardness not larger than 7, i.e., inorganic fillers having 1 to 7 Mohs hardness.
-
inorganic fillers having 1 to 7 Mohs hardness
for example, aluminum hydrate having a Mohs hardness of 3, which was manufactured by Nippon Light Metal K.K. was used in an amount of 25% by weight of the mica layer 13 .
-
the quartz having a Mohs hardness of 7
has the highest hardness among the glass material, a satisfactory result can also be obtained when the Mohs hardness of the glass material is examined so as to select the inorganic filler used in the case of using another glass material.
-
the aluminum bar
was drawn for 2 hours or more under a vacuum environment, followed by applying a heat treatment under the conditions suitable for the curing conditions of the thermosetting epoxy resin composition while applying a prescribed pressure to the heated portion.
-
the prepared mica tape
was not broken during the winding operation of the mica tape around the conductor.
-
the aluminum hydrate
exhibits a heat conductivity of 3 W/m ⁇ K, which is higher than the heat conductivity of about 1 W/m ⁇ K of the mica, the heat conductivity was improved effectively, compared with the conventional mica tape.
-
inorganic filler 16
having a Mohs hardness of 7 to 1 in the mica tape 11 in combination with the glass cloth 14 formed of quartz glass. It is also possible to use magnesium oxide and a hexagonal boron nitride having a Mohs hardness of 6 and having a good heat conductivity may be used singly or in combination with one or more of inorganic materials having a Mohs hardness of 7 to 1. The heat conductivity of the insulating layer can be further improved by using these inorganic fillers.
-
FIG. 2
is a view showing a table denoting the results of the comparative experiments in respect of the characteristics of the mica tapes using alumina, aluminum hydrate and magnesium oxide, respectively, as an inorganic filler.
-
FIG. 2
is directed to the winding properties of a mica tape.
-
a mica tape
was wound about a metal column conductor modeling as a coil conductor such as an aluminum column conductor with a prescribed tension imparted to the mica tape so as to visually observe the breakage of the tape.
-
Comparative Examples 2 and 3
were compared with each other in respect of the resistance of the tape to the breakage. As apparent from FIG. 2 , Comparative Example 2 using an inorganic filler having a lower Mohs hardness was found to be higher than Comparative Example 3 in the mechanical resistance of the mica tape to the breakage. It is considered reasonable to understand that the inorganic filler having a lower Mohs hardness is less likely to do damage to the glass fiber forming the base material of the mica tape with the result that Comparative Example 2 using an inorganic filler having a lower Mohs hardness was found to be higher than Comparative Example 3 in the resistance of the mica tape to the breakage as pointed out above.
-
the mica tape according to the second embodiment
is substantially equal to that according to the first embodiment described above, except that a binder insoluble in an impregnating resin used in the heating step of the coil under pressure is used for holding an inorganic filler 9 .
-
a mica tape
was wound a plurality of times about a modeling coil conductor made of an aluminum bar having a rectangular cross section by applying a prescribed tension to the mica tape, followed by performing a vacuum drawing for 2 hours or more to subsequently allow the mica tape to be impregnated with an impregnating thermosetting resin.
-
the impregnating resin noted above
comprised 45% by weight of alicyclic epoxy compound, 40% by weight of an acid anhydride curing agent and 15% by weight of a reactive diluent, which was disclosed in Japanese Patent Disclosure (Kokai) No. 11-345733.
-
the impregnating resin
has a low viscosity of about 30 mpa ⁇ s at room temperature, it is possible for the inorganic filler to flow out in general in the following heating stage of the impregnated resin.
-
the mica tape
can be wound under a high tension, with the result that the inorganic filler held in the impregnating resin by using an insoluble binder is strongly held between the adjacent mica layers. Therefore, even after the heating process after impregnation of the resin, it was possible to suppress the flow of the inorganic filler from the mica tape.
-
a sparse glass cloth having a wide clearance among the adjacent yarns
is used as a glass cloth constituting one element of the mica tape.
-
the density of the warps 15 a of the glass cloth 14 M
was made half the density of the warps 15 a shown in FIG. 1 .
-
the density of the wefts 15 b
was made equal to that shown in FIG. 1 .
-
the density of the warps 15 a of the glass cloth 14 M
is made lower, with the result that a large number of inorganic fillers 16 are arranged in the mesh defined by the warps 15 a and the wefts 15 b of the glass cloth 14 . It follows that the contact area among the warp 15 a and the weft 15 b of the glass fiber and the inorganic filler 16 is made larger than that in the case of FIG. 1 .
-
the mica tape 11
can be wound tightly without being broken because aluminum hydrate has a Mohs hardness of 3 and, thus, is very soft compared with glass.
-
the particle diameter of the inorganic filler
was smaller than the thickness of the glass cloth 14 , 14 M.
-
inorganic fillers added to the mica tape 11 M
may include an inorganic filler 16 M having a particle diameter larger than the thickness of the glass cloth 14 M as shown in FIG. 4 .
-
the inorganic filler 16 M
may be used singly or in addition to the inorganic fillers 16 having a smaller particle diameter.
-
hydrates of aluminum particles having a particle diameter of 55 ⁇ m
were used in combination with the glass cloth having a thickness of 30 ⁇ m.
-
the stress applied to the outer circumferential surface of the coil conductor in winding the mica tape 11 M around the coil conductor while applying a tension to the mica tape 11 M
is transmitted mainly to the inorganic filler 16 and to the two mica layers 13 adjacent to the upper and lower surfaces of the inorganic filler 16 .
-
the glass cloth 14 M
was possible to prevent the glass cloth 14 M from being broken and to suppress the breakage of the mica tape 11 M.
-
the inorganic filler 16 M having a particle diameter larger than the thickness of the glass cloth 14 M
is arranged between the adjacent glass cloths 14 M.
-
the inorganic filler layers 16 positioned inside the insulating layer formed by winding the mica tape a plurality of times
is brought into direct contact with the adjacent mica layers 13 . It follows that the heat conductivity between the adjacent mica layers via the inorganic filler layers including the inorganic filler 16 M is improved so as to make it possible to obtain an insulating layer exhibiting a good heat conductivity.
-
the occasion in which the inorganic fillers in the upper and lower mica layers are brought into direct contact with each other
is lowered, with the result that a resin having a low heat conductivity is interposed in a larger amount between the upper and lower mica layers or between the inorganic filler layers.
-
a resin having a low heat conductivity
is interposed in a larger amount between the upper and lower mica layers or between the inorganic filler layers.
-
Each of the embodiments described above
is directed to the case of using aluminum hydrate as an inorganic filler.
-
magnesium oxide
e.g., “PYROKISUMA” manufactured by Kyowa Kagaku K.K. in place of aluminum hydrate so as to impart a high heat conductivity of aluminum oxide to the mica tape.
-
Magnesium oxide
has a heat conductivity of 48 W/m ⁇ K, which is higher than that of aluminum hydrate and, thus, a high heat conductivity can be imparted to the mica tape more effectively.
-
magnesium oxide
has a Mohs hardness of 6, which is lower than that of glass. As a result, the glass cloth is not damaged in the case of using magnesium oxide. It follows that the mica tape may not be broken when the mica tape is wound around the coil conductor.
-
a hexagonal boron nitride
e.g., “SHOBN” manufactured by Showa Denko K.K., which has a low Mohs hardness and a high heat conductivity, can be used in place of aluminum hydrate.
-
the hexagonal boron nitride
exhibits an effect of low friction characteristics, the sliding of the tape is facilitated during the winding operation of the mica tape, with the result that the tape can be wound about a coil conductor easily under a high tension.
-
Additional inorganic fillers
which can be used in the present invention include, for example, calcium carbonate, magnesium hydroxide, Talc, and mullite.
-
Calcium carbonate
has a Mohs hardness of 4 and a heat conductivity of 3 W/m ⁇ K.
-
Magnesium hydroxide
has a Mohs hardness of 4.
-
Talc
which is a water-containing magnesium silicate, has a Mohs hardness of 1.
-
mullite
has a Mohs hardness of 3 and a heat conductivity of 6 W/m ⁇ K. It is possible for the mullite to be provided by a mullite powder manufactured by Kyoritsu Material K.K.
-
the first inorganic filler
has a prescribed particle diameter substantially equal to that of, for example, the thickness of the glass cloth.
-
the second filler
has a particle diameter not larger than 30% of the particle diameter of the first inorganic filler.
-
the second inorganic filler
has a particle diameter not larger than 30% of the particle diameter of the first inorganic filler as pointed out above, the second inorganic fillers are held among the clearances formed by the first inorganic fillers.
-
the first inorganic filler that is brought into direct contact with the glass cloth
it is necessary for the first inorganic filler that is brought into direct contact with the glass cloth to be formed of an inorganic filler having a Mohs hardness not higher than that of glass in order to prevent the breakage of the mica tape from being concerned about. It follows that it is possible to use particles of an inorganic material having a Mohs hardness exceeding 7 and also having a particle diameter not larger than 30% of the particle diameter of the first inorganic filler as a second inorganic filler.
-
the amount of the second inorganic filler
is necessary for the amount of the second inorganic filler to be not larger than the total volume of the clearances formed among the first inorganic fillers.
-
aluminum hydrate particles having a particle diameter of 55 ⁇ m
were used as the first inorganic filler relative to the glass cloth having a prescribed thickness, and aluminum hydrate particles having a particle diameter of 6.3 ⁇ m were added as the second inorganic filler to the first inorganic filler in an amount of up to 20% by volume so as to manufacture a mica tape.
-
the mica tape thus manufactured
was wound experimentally about a rectangular aluminum bar formed as a modeling coil conductor, with the result that the tape was not broken during the winding process.
-
the second inorganic filler
prefferably be formed of a material having a Mohs hardness exceeding 7 as far as the particle diameter and the additional amount of the second inorganic filler fall within the ranges given previously.
-
the second inorganic filler having a Mohs hardness exceeding 7
includes, for example, diamond, aluminum oxide, aluminum nitride and silicon nitride.
-
inorganic particles having a Mohs hardness not larger than 7
such as magnesium oxide and hexagonal boron nitride.
-
the second fillers
are arranged within the clearances among the particles of the first inorganic filler, with the result that it is substantially impossible for the second inorganic filler to be brought into direct contact with the glass cloth. It follows that it is possible to avoid the damage done to the glass cloth when the mica tape is wound around the conductor under the state that the loading rate of the inorganic filler is improved so as to maintain, for example, a high heat conductivity.
-
the particle diameter of the second inorganic filler
was not larger than 10% of the fist inorganic filler, no improvement was recognized in the properties. Also, where the additional amount of the second inorganic filler was not larger than 5% by weight of the first inorganic filler, no improvement was also recognized in the properties.
-
upper and lower stator coils 22 a , 22 b
are manufactured as electrical rotating machine coils by forming an insulating layer 21 using a mica tape in any of the embodiments described above, and the stator coils 22 a , 22 b thus manufactured are housed in a slot 24 formed in the stator core 23 as shown in FIG. 5 .
-
Each of the upper and lower stator coils 22 a , 22 b
includes the insulating layer 21 formed around the coil conductor portion 25 , and spacers 26 are arranged in the bottom portion, the middle portion and the open portion of the slot 24 , respectively.
-
a stator wedge 27
is fixed to the open portion of the slot 24 so as to permit the coils 22 a , 22 b to be fixed within the slot 24 .
-
stator 22 of the construction described above
exhibited a satisfactory breakdown voltage and a good flame resistance and further exhibited the improvement of the heat conductivity in the case where the stator coils were prepared by winding the mica tape in each of the embodiments described above using aluminum hydrate as an inorganic filler, respectively.
-
the mica tape
was found to be substantially free from the breakage so as to make it unnecessary to carry out the frequent operations such as rewinding of the mica tape, with the result that the electrical rotating machine coil can be manufactured easily.
-
the inorganic filler
in the case of using magnesium oxide or a hexagonal boron nitride as the inorganic filler, it is possible to improve markedly the heat conductivity of the electrical rotating machine coil. As a result, the temperature elevation of the stator coil 22 can be markedly suppressed so as to make it possible to miniaturize the entire electrical rotating machine when the electrical rotating machine coil is used therein.
-
the flame retardancy of the coil
can be improved, it is possible to secure a satisfactory state of the electrical rotating machine over a long period of time. Further, since the breakdown voltage characteristic of the coil can be improved, it is possible to apply a high voltage to the electrical rotating machine so as to diminish the current flowing through the coil conductor. It follows that it is possible to lower the operating temperature and to improve the efficiency of the operation.
-
the inorganic filler within the mica tape used for forming the insulating layer in this embodiment
has a Mohs hardness lower than that of the general inorganic filler such as aluminum oxide. It follows that it is possible to suppress the stresses generated within the insulating layer. As a result, the mechanical deterioration of the insulating layer 21 caused by the thermal stress accompanying a large number of times of starting and stopping of the electrical rotating machine is suppressed. It follows that it is possible to provide an electrical rotating machine including an insulated coil layer excellent in the reliability for a long time.
-
FIG. 6
is a cross-sectional view briefly showing the construction of an electrical rotating machine according to one embodiment of the present invention, which was constructed by forming an insulating layer by using a mica tape of the present invention.
-
a rotating shaft 31
is rotatably supported by a bearing 33 held by a bearing bracket 32 .
-
a rotor core 35 prepared by laminating a plurality of electromagnetic steel plates
is mounted on the rotating shaft 31 , and the rotor core 35 is fixed to the rotating shaft 31 by a core-suppressing plate 36 .
-
a stator core 37 held by the bracket 34
is arranged near the outer circumferential surface of the rotor core 35 like the rotor core 35 . Slots are formed to extend in the axial direction of the stator core 37 .
-
the upper and lower stator coils 22 a , 22 b as shown in FIG. 5
are inserted into and fixed within each of the slots.
-
the electrical rotating machine of the particular construction
is prepared by using the electrical rotating machine coil 22 of the present invention as shown in, for example, FIG. 5 , it is possible to provide an electrical rotating machine provided with a coil insulating layer that can be miniaturized and is excellent in the reliability for a long time.
-
the present invention
provides a mica tape, which is not broken even if wound about a conductor while applying a prescribed tension and which makes it possible to obtain an insulating layer capable of exhibiting the characteristics of the inorganic filler to the highest degree, to provide an electrical rotating machine coil using the mica tape, and to provide a miniaturized electrical rotating machine exhibiting a high performance by using the electrical rotating machine coil.
Images (4)
Classifications
-
-
H—ELECTRICITY
-
H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
-
H02K—DYNAMO-ELECTRIC MACHINES
-
H02K3/00—Details of windings
-
H02K3/30—Windings characterised by the insulating material
-
H—ELECTRICITY
-
-
H—ELECTRICITY
-
H01—ELECTRIC ELEMENTS
-
H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
-
H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
-
H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
-
H01B3/04—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
-
H—ELECTRICITY
-
-
H—ELECTRICITY
-
H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
-
H02K—DYNAMO-ELECTRIC MACHINES
-
H02K3/00—Details of windings
-
H02K3/32—Windings characterised by the shape, form or construction of the insulation
-
H02K3/40—Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
-
H—ELECTRICITY
-
-
H—ELECTRICITY
-
H01—ELECTRIC ELEMENTS
-
H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
-
H01F27/00—Details of transformers or inductances, in general
-
H01F27/28—Coils; Windings; Conductive connections
-
H01F27/32—Insulating of coils, windings, or parts thereof
-
H01F27/323—Insulation between winding turns, between winding layers
-
H—ELECTRICITY
-
-
Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
-
Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
-
Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
-
Y10T428/00—Stock material or miscellaneous articles
-
Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
-
Y10T428/2913—Rod, strand, filament or fiber
-
Y10T428/2933—Coated or with bond, impregnation or core
-
Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
-
Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
-
-
Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
-
Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
-
Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
-
Y10T428/00—Stock material or miscellaneous articles
-
Y10T428/31504—Composite [nonstructural laminate]
-
Y10T428/31511—Of epoxy ether
-
Y10T428/31525—Next to glass or quartz
-
Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
-
-
Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
-
Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
-
Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
-
Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
-
Y10T442/30—Woven fabric [i.e., woven strand or strip material]
-
Y10T442/3179—Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
-
Y10T442/322—Warp differs from weft
-
Y10T442/3228—Materials differ
-
Y10T442/3236—Including inorganic strand material
-
Y10T442/3252—Including synthetic polymeric strand material
-
Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
Landscapes
-
Engineering & Computer Science
(AREA) -
Power Engineering
(AREA) -
Chemical & Material Sciences
(AREA) -
Inorganic Chemistry
(AREA) -
Insulation, Fastening Of Motor, Generator Windings
(AREA) -
Insulating Bodies
(AREA)
Abstract
Description
Claims (14)
2005-09-29
2007-05-24
MICA tape, electrical rotating machine coil, and electrical rotating machine comprising the electrical rotating machine coil
Active
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283422A JP4996086B2
|
2005-09-29 | 2005-09-29 | Mica tape and rotating electric coil using this mica tape |
JP2005-283422 | 2005-09-29 | ||
PCT/JP2006/319365 WO2007037342A1
|
2005-09-29 | 2006-09-28 | Mica tape, rotary electric coil making use of the same, and rotary electric equipment including the rotary electric coil |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/319365 Continuation WO2007037342A1
|
2005-09-29 | 2006-09-28 | Mica tape, rotary electric coil making use of the same, and rotary electric equipment including the rotary electric coil |
JPPCT/JP06/19365 Continuation |
2006-09-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070222307A1
|
2007-09-27 |
US7498517B2
true
|
2009-03-03 |
2005-09-29
2007-05-24
MICA tape, electrical rotating machine coil, and electrical rotating machine comprising the electrical rotating machine coil
Active
Family
ID=37899765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/753,091 Active
|
2005-09-29 | 2007-05-24 | MICA tape, electrical rotating machine coil, and electrical rotating machine comprising the electrical rotating machine coil |
Country Status (7)
Country | Link |
---|---|
US (1) |
US7498517B2
|
EP (1) |
EP1930915B1
|
JP (1) |
JP4996086B2
|
CN (1) |
CN100576372C
|
BR (1) |
BRPI0606266B1
|
CA (1) |
CA2589474C
|
WO (1) |
WO2007037342A1
|
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110181145A1
* |
2010-01-22 | 2011-07-28 | Thomas Baumann | Conductive bar for electric machines |
US20140327335A1
* |
2011-11-14 | 2014-11-06 | Mitsubishi Electric Corporation | Electromagnetic coils, method of manufacturing same, and insulating tapes |
US20150140885A1
* |
2012-05-07 | 2015-05-21 | Siemens Aktiengesellschaft | Insulating tape material, method for production and usage thereof |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7033670B2
|
2003-07-11 | 2006-04-25 | Siemens Power Generation, Inc. | LCT-epoxy polymers with HTC-oligomers and method for making the same |
US20080050580A1
* |
2004-06-15 | 2008-02-28 | Stevens Gary C | High Thermal Conductivity Mica Paper Tape |
US20050277721A1
* |
2004-06-15 | 2005-12-15 | Siemens Westinghouse Power Corporation | High thermal conductivity materials aligned within resins |
US7553781B2
* |
2004-06-15 | 2009-06-30 | Siemens Energy, Inc. | Fabrics with high thermal conductivity coatings |
US20050274774A1
* |
2004-06-15 | 2005-12-15 | Smith James D | Insulation paper with high thermal conductivity materials |
US7651963B2
|
2005-04-15 | 2010-01-26 | Siemens Energy, Inc. | Patterning on surface with high thermal conductivity materials |
US7655295B2
* |
2005-06-14 | 2010-02-02 | Siemens Energy, Inc. | Mix of grafted and non-grafted particles in a resin |
US7955661B2
* |
2005-06-14 | 2011-06-07 | Siemens Energy, Inc. | Treatment of micropores in mica materials |
US7851059B2
* |
2005-06-14 | 2010-12-14 | Siemens Energy, Inc. | Nano and meso shell-core control of physical properties and performance of electrically insulating composites |
US7781057B2
* |
2005-06-14 | 2010-08-24 | Siemens Energy, Inc. | Seeding resins for enhancing the crystallinity of polymeric substructures |
US8357433B2
* |
2005-06-14 | 2013-01-22 | Siemens Energy, Inc. | Polymer brushes |
JP2012161153A
* |
2011-01-31 | 2012-08-23 | Denso Corp | Stator of rotary electric machine and method of manufacturing the same |
BR112013025505B1
* |
2011-04-18 | 2020-04-22 | Mitsubishi Electric Corp | rotor coil, and, method for making a rotor coil |
JP5611182B2
* |
2011-12-07 | 2014-10-22 | 株式会社日立製作所 | Dry mica tape, and electrically insulated wire ring and rotating electric machine using the same |
US20140015353A1
* |
2012-07-13 | 2014-01-16 | Lcdrives Corp. | High efficiency permanent magnet machine with layer form winding |
US20140035426A1
* |
2012-08-02 | 2014-02-06 | Remy Technologies, L.L.C. | Stator including conductors provided with a ceramic covering |
CN102820110A
* |
2012-09-03 | 2012-12-12 | 中国船舶重工集团公司第七一二研究所 | Glass cloth reinforcing high-thermal conductivity mica tape and preparation method thereof |
JP5611485B1
* |
2013-01-10 | 2014-10-22 | 三菱電機株式会社 | Insulating tape, manufacturing method thereof, and stator coil |
JP6293474B2
* |
2013-01-18 | 2018-03-14 | 株式会社東芝 | Non-linear resistance paint, busbar and stator coil |
DE102013201053A1
* |
2013-01-23 | 2014-07-24 | Siemens Aktiengesellschaft | Isolation arrangement for a high voltage machine |
ES2911773T3
* |
2013-11-29 | 2022-05-20 | Ge Renewable Tech | Rotary machine with improved cooling |
US10199136B2
* |
2014-01-29 | 2019-02-05 | Mitsubishi Electric Corporation | Insulating tape and production method thereof, stator coil and production method thereof, and rotating electric machine |
DE102014204416A1
* |
2014-03-11 | 2015-09-17 | Siemens Aktiengesellschaft | Insulation tape, its use as electrical insulation for electrical machines, electrical insulation and method of making the insulation tape |
BR102016000057A2
* |
2016-01-04 | 2017-07-11 | Whirlpool S.A. | DEVICE FOR ELECTRIC MOTOR STATOR, ELECTRIC MOTOR AND ELECTRIC MOTOR STATOR COIL ISOLATION PROCESS |
WO2017175397A1
* |
2016-04-08 | 2017-10-12 | 日立化成株式会社 | Mica tape, cured product of mica tape, and insulating material |
JP7219123B2
* |
2019-03-07 | 2023-02-07 | 株式会社日立産機システム | mold equipment |
JP2020170828A
* |
2019-04-05 | 2020-10-15 | Tdk株式会社 | Substrate and laminated substrate |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05211015A
|
1991-12-20 | 1993-08-20 | Okabe Maika Kogyosho:Kk | Mica sheet-like member for high temperature electric insulation |
JPH06223662A
|
1992-12-28 | 1994-08-12 | Asea Brown Boveri Ag | Insulating tape composed of one or more textile layers and mica layer and its manufacture |
US6242825B1
* |
1998-11-25 | 2001-06-05 | Hitachi, Ltd. | Electric rotating machine with reduced thickness and volume of insulation |
JP2002093257A
|
2000-09-13 | 2002-03-29 | Japan Mica Ind Co Ltd | Mica substrate sheet body and insulated coil |
JP2002118997A
* |
2000-10-06 | 2002-04-19 | Toshiba Aitekku Kk | Stacked member and rotating-electric machine using the same |
JP2002330562A
|
2001-04-27 | 2002-11-15 | Toshiba Corp | Coil for rotary electric machine, and mica tape used for insulation of the coil |
JP2003009446A
|
2001-06-19 | 2003-01-10 | Hitachi Ltd | High heat conductive insulting coil and rotating electric machine |
US6563413B1
* |
1998-02-24 | 2003-05-13 | Asta Elektrodraht Gmbh | Multiple parallel conductor for electrical machines and devices |
US6699804B1
* |
1998-06-17 | 2004-03-02 | Compagnie Royale Asturienne des Mines SociétéAnonyme | Method for making a micaceous product preferably in the form of a mica ribbon and resulting product |
JP2004349115A
|
2003-05-22 | 2004-12-09 | Toshiba Corp | Tape member, method for manufacturing the tape member, and electromagnetic coil and electromagnetic device using tape member |
JP2005006389A
|
2003-06-11 | 2005-01-06 | Mitsubishi Electric Corp | Method of manufacturing insulated coil |
US20050208301A1
|
2002-07-04 | 2005-09-22 | Tetsushi Okamoto | Highly heat conductive insulating member, method of manufacturing the same and electromagnetic device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB868833A
* |
1958-08-14 | 1961-05-25 | Karel Preveaux | An electric vibration generator |
JPH03200858A
* |
1989-12-28 | 1991-09-02 | Hitachi Chem Co Ltd | Epoxy resin composition and production of insulation structure therefrom |
CN100488906C
* |
1998-10-13 | 2009-05-20 | Ppg工业俄亥俄公司 | Glass fiber-reinforced prepreg, laminates, electronic circuit boards and methods for assembling fabric |
-
2005
-
2005-09-29
JP
JP2005283422A
patent/JP4996086B2/en
active
Active
-
2005-09-29
-
2006
-
2006-09-28
EP
EP06798413.8A
patent/EP1930915B1/en
active
Active -
2006-09-28
CA
CA 2589474
patent/CA2589474C/en
active
Active -
2006-09-28
CN
CN200680001312A
patent/CN100576372C/en
active
Active -
2006-09-28
BR
BRPI0606266-0A
patent/BRPI0606266B1/en
active
IP Right Grant -
2006-09-28
WO
PCT/JP2006/319365
patent/WO2007037342A1/en
active
Application Filing
-
2006-09-28
-
2007
-
2007-05-24
US
US11/753,091
patent/US7498517B2/en
active
Active
-
2007-05-24
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05211015A
|
1991-12-20 | 1993-08-20 | Okabe Maika Kogyosho:Kk | Mica sheet-like member for high temperature electric insulation |
JPH06223662A
|
1992-12-28 | 1994-08-12 | Asea Brown Boveri Ag | Insulating tape composed of one or more textile layers and mica layer and its manufacture |
US5540969A
* |
1992-12-28 | 1996-07-30 | Asea Brown Boveri Ltd. | Insulating tape and method of producing it |
US6563413B1
* |
1998-02-24 | 2003-05-13 | Asta Elektrodraht Gmbh | Multiple parallel conductor for electrical machines and devices |
US6699804B1
* |
1998-06-17 | 2004-03-02 | Compagnie Royale Asturienne des Mines SociétéAnonyme | Method for making a micaceous product preferably in the form of a mica ribbon and resulting product |
US6242825B1
* |
1998-11-25 | 2001-06-05 | Hitachi, Ltd. | Electric rotating machine with reduced thickness and volume of insulation |
US6426578B1
* |
1998-11-25 | 2002-07-30 | Hitachi, Ltd. | Electric rotating machine |
JP2002093257A
|
2000-09-13 | 2002-03-29 | Japan Mica Ind Co Ltd | Mica substrate sheet body and insulated coil |
JP2002118997A
* |
2000-10-06 | 2002-04-19 | Toshiba Aitekku Kk | Stacked member and rotating-electric machine using the same |
US20040094325A1
|
2001-04-27 | 2004-05-20 | Katsuhiko Yoshida | Coil for electric rotating machine, and mica tape and mica sheet used for the coil insulation |
JP2002330562A
|
2001-04-27 | 2002-11-15 | Toshiba Corp | Coil for rotary electric machine, and mica tape used for insulation of the coil |
JP2003009446A
|
2001-06-19 | 2003-01-10 | Hitachi Ltd | High heat conductive insulting coil and rotating electric machine |
US20050208301A1
|
2002-07-04 | 2005-09-22 | Tetsushi Okamoto | Highly heat conductive insulating member, method of manufacturing the same and electromagnetic device |
JP2004349115A
|
2003-05-22 | 2004-12-09 | Toshiba Corp | Tape member, method for manufacturing the tape member, and electromagnetic coil and electromagnetic device using tape member |
JP2005006389A
|
2003-06-11 | 2005-01-06 | Mitsubishi Electric Corp | Method of manufacturing insulated coil |
US20050097726A1
* |
2003-06-11 | 2005-05-12 | Mitsubishi Denki Kabushiki Kaisha | Manufacturing method of insulation coil |
Also Published As
Publication number | Publication date |
---|---|
EP1930915A1
|
2008-06-11 |
CA2589474C
|
2013-04-30 |
BRPI0606266A2
|
2009-06-09 |
EP1930915B1
|
2016-08-10 |
US20070222307A1
|
2007-09-27 |
CN100576372C
|
2009-12-30 |
CA2589474A1
|
2007-04-05 |
BRPI0606266B1
|
2020-02-11 |
WO2007037342A1
|
2007-04-05 |
EP1930915A4
|
2014-06-25 |
JP2007095490A
|
2007-04-12 |
CN101069249A
|
2007-11-07 |
JP4996086B2
|
2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7498517B2
|
MICA tape, electrical rotating machine coil, and electrical rotating machine comprising the electrical rotating machine coil | |
US7973243B2
|
Coil insulator, armature coil insulated by the coil insulator and electrical rotating machine having the armature coil | |
KR101574340B1
|
stator bar components with high thermal conductivity | |
JP6203235B2
|
Electromagnetic coil and manufacturing method thereof | |
EP2808981B1
|
Electrical insulation system | |
CN102869467B
|
For the electrically insulating material of high-pressure rotary machine, insulating paper and insulating tape | |
US20070026221A1
|
Morphological forms of fillers for electrical insulation | |
GB2456373A
|
Stator bar components with high thermal conductivity resins, varnishes, and putties | |
US20140246929A1
|
High thermal conductivity insulation for electrical machines | |
JPH06223662A
|
Insulating tape composed of one or more textile layers and mica layer and its manufacture | |
CN104126207A
|
Composite materials for use in high voltage devices | |
CN106030727B
|
Especially for the external anticorona anticorona paper of conduction | |
JP3653901B2
|
Rotator stator coil | |
KR101918436B1
|
Inorganic electrical insulation material | |
CN105226863B
|
A kind of city rail vehicle linear electric motor primary coil high heat conductive insulating structure | |
JP4116236B2
|
Laminated member and rotating electric machine using the same | |
|
A new approach in insulation systems for rotating machines | |
JP5159812B2
|
Rotating electric machine | |
JP2000173818A
|
Coil and manufacture of coil | |
JPH11329126A
|
Mica base material sheet and insulating coil | |
CN114068076B
|
High-temperature-resistant electromagnetic wire and manufacturing process thereof | |
RU2590896C2
|
Method of making electric insulating material, electrically insulating material, as well as electric machine | |
|
Micaceous mainwall insulation for high-voltage rotating machines | |
JP2008248178A
|
Fiber reinforced composite material and electric appliance | |
JP2002058190A
|
Insulating tape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name:
Free format text: |
|
STCF | Information on status: patent grant |
Free format text: |
|
FPAY | Fee payment |
Year of fee payment: |
|
FPAY | Fee payment |
Year of fee payment: |
|
MAFP | Maintenance fee payment |
Free format text:
Year of fee payment: |