logo-1

US11027520 – Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same

Definitions

  • the present invention
    relates to a method of applying a mica paper as insulation to an electrical conductor and a mica paper tape useful in such method.
  • High mica-content papers
    are useful as insulation in motors, generators and inverters.
  • Mica papers with higher content mica
    typically have a mechanical supporting layer such as a glass cloth or polyester film to compensate for mechanical weakness in the mica paper associated with the high mica content.
  • the mechanical supporting layer
    is undesirable in use in electrical equipment because many insulation failures are attributable to that mechanical support layer and its lower corona resistance, different thermal expansion, and different conductivity.
  • This invention
    relates to a method of applying a mica paper around an electrical conductor, the process including
  • This invention
    also relates to a tape having a first face comprising a continuous surface of mica paper and a second face comprising a support layer, wherein the mica paper comprises 70 to 99 weight percent mica and 1 to 30 weight percent binder and the support layer comprises a film, a paper, a nonwoven fabric, or a woven fabric; wherein the initial elongation of the support layer is equal to or less than the initial elongation of the mica paper; and wherein the support layer is demountably attached to the mica paper such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper.
  • FIGS. 1-4
    illustrate certain aspects of the method of applying an insulation tape to a conductor having a rectangular cross section.
  • This invention
    relates to a method of applying insulation to an electrical conductor with use of mica paper in combination with a peelable support layer.
  • Such peelable support layer
    is temporarily used to support the mica paper under tension during a winding process along a length of an electrical conductor and then the peelable support layer is removed as taping along an electrical conductor proceeds. This method can result with only mica paper wrapped on the conductor without any other additional layer present.
  • the mica papers
    are useful in many kinds of electrical components but more particularly in rotating equipment such as low voltages (nominal voltage below 1000 V). Examples of electrical components include motors, generators and invertors.
  • a preferred electrical conductor
    is a coil to which mica paper is applied.
  • the mica application method
    is useful for electrical insulation having properties of thermal stability and corona discharge resistance while retaining acceptable mechanical strength.
  • Mica paper as used herein
    means a paper containing the inorganic material mica.
  • the mica content
    can be at least 45% by weight; however, the most useful electrical properties are present when the mica paper has at least 70% by mica, and preferably when the mica paper has at least 85 or 90 percent by weight mica.
  • the term “mica”, as used herein,
    is used in its conventional meaning directed to form of a silicate mineral.
  • Mica particles
    normally in the form of a flake of various types, such as muscovite or phlogopite or blends thereof, can be used; however, mica of the muscovite type is preferred.
  • a preferred type of mica for electrical insulation
    is muscovite with optionally phlogopite present.
  • a preferred method of applying a mica paper with a peelable layer to an electrical conductor
    is through use of a high speed machine for wrapping a material around a surface.
  • a high speed machine
    for wrapping a material around a surface.
  • Such high speed machines
    are well known.
  • the method disclose herein
    can be done by hand, which means a person would apply and wrap the mica paper around and along an electrical conductor.
  • the term peelable support layer
    denotes that such support layer can be removed, i.e. separated, by hand or machine from a mica paper.
  • a person holding a roll of the mica paper contacting the peelable support layer
    is able to remove the peelable support layer without damaging the mica paper.
  • the support layer
    is said to be demountably attached to the mica paper.
  • demountably attached
    it is meant the support layer is peelable from the mica paper, such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper.
  • the initial elongation of the support layer
    is equal to or less than the initial elongation of the mica paper.
  • Suitable examples of a peelable layer
    include a film, a paper, a nonwoven fabric, or a woven fabric; specific examples include cellulosic paper, polymeric film, woven textile, nonwoven structure, aramid paper and metal foil.
  • This invention
    relates to a method of applying a mica paper around an electrical conductor, the process including
  • the face of the tape comprising the continuous surface of mica
    is attached to the conductor at an attachment point the surface of the conductor.
  • This
    can be achieved by applying a front edge or end of the tape to the electrical conductor wherein the front edge or end of the continuous surface of the mica paper adheres to the conductor by use of an adhesive either (i) on the electrical conductor or (ii) on the front edge or end of the surface of the mica paper. It is understood that in all cases an adhesive need not be on an edge, the front edge of the conductor, but will be on the end of the mica paper which contacts the electrical conductor. It is necessary for the mica paper to remain in contact with the electrical conductor as winding tension is applied to the tape.
  • the tape
    is then wound around the conductor, the mica paper being in contact with the conductor surface, until the tape has been wound to a point of winding that is at least 25 percent of the conductor circumference from the attachment point on the surface of the conductor; and then initiating a continuous removal of the support layer from the tape, starting at the attachment point, the mica paper remaining in contact with the surface of the conductor.
  • the continuous removal of the support layer
    can be initiated when there is this distance between the initial attachment point and the winding point because the conductor being wrapped provides adequate support of the mica paper on the conductor.
  • a distance between the initial attachment point (or the removal point) and the winding point of at least 25 percent of the conductor circumference
    is the minimum practical distance, and is useful when the conductor has generally a round or oval cross sectional shape.
  • the distance between the initial attachment point (or the removal point) and the winding point
    is at least 50 percent of the conductor circumference. This is especially is preferred when the conductor has a generally square or rectangular cross sectional shape. This allows the tape to be wrapped around a rectangular corner of the conductor to provide additional support prior to the removal of the support layer.
  • FIGS. 1-4
    The wrapping technique on a conductor of rectangular cross section is illustrated in FIGS. 1-4 .
  • electrical insulation tape 2
    having a support layer 3 and mica paper 4 is shown attached to conductor 1 .
  • the end of the insulation tape
    forms attachment point 5 on the surface of the conductor.
  • the tape
    is wound around the conductor, and as it is wound, the leading edge of the contact between the tape and the conductor is the winding point 6 .
  • the point 7 on the conductor
    is the point 50% of the conductor circumference from the attachment point 5 , at which point the support layer can start to be removed from the mica paper at the attachment point 5 .
  • FIG. 1
    electrical insulation tape 2 having a support layer 3 and mica paper 4 is shown attached to conductor 1 .
  • the end of the insulation tape
    forms attachment point 5 on the surface of the conductor.
  • the tape
    is wound around the conductor, and as it is wound, the leading edge of the contact between the tape and the conductor is the winding point 6 .
  • the point 7 on the conductor
    is
  • FIG. 4
    further illustrates the wrapping, with the winding point 8 and removal point 9 having progressed around the surface of the conductor. The wrapping continues around the conductor in this manner.
  • the maximum distance between the attachment point (or removal point) and the winding point
    is necessarily less than 100 percent of the circumference of the conductor, otherwise the support layer would be wound onto the conductor. From a practical sense, it is believed practical maximum distance between the attachment point (or removal point) and the winding point is 90% percent of the circumference of the conductor.
  • the method
    continues by continuing to wind the tape around the conductor, the mica paper being in at least partial contact with the conductor surface and continuously contacting the surface at a winding point, while simultaneously removing the support layer at a removal point until a desired amount of conductor surface is completely covered with at least one layer of the mica paper, with the proviso that the removal point, where the support layer is removed from the mica paper, is maintained at least 25 percent of the conductor circumference behind the winding point until the desired amount of conductor surface is completely covered.
  • the tape
    is helically or spirally wound around the conductor. Further, preferably at least a portion of the tape is wound with one layer of mica paper at least partially overlapping a prior-wrapped mica paper layer. Typically an overlap of the wrapped tape is preferred, with an overlap of about 50% of the width of the tape being most preferred.
  • the words “surface of conductor”
    is meant to include the outer surface of an electrical conductor wherein an insulation wrap is desired.
  • the “surface of the conductor
    is not limited to only a bare metal surface of the conductor, but is understood to also include the outer surface of a conductor that might have had a coating on the metal surface or other material applied to the metal surface, or even another form of insulation applied to the conductor.
  • One preferred tape for winding on conductors
    is a tape having a layer of continuous mica paper in combination with a peelable support layer. That is, a tape having a first face comprising a continuous surface of mica paper and a second face comprising a support layer, wherein the mica paper comprises 70 to 99 weight percent mica and 1 to 30 weight percent binder and the support layer comprises a film, a paper, a nonwoven fabric, or a woven fabric; wherein the initial elongation of the support layer is equal to or less than the initial elongation of the mica paper; and wherein the support layer is demountably attached to the mica paper such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper.
  • the layer of mica paper
    has 90 to 99 weight percent mica, and in some specialized embodiments the mica paper had 95 to 99 weight percent mica.
  • the mica paper
    can contain one or more additives. Typically such additives include the binder to add cohesive strength to the mica paper, and other materials such as fibers or floc.
  • the mica paper
    further includes cellulose, acetate, acrylic, polyolefin, polyamide, polyester fiber, glass fiber, rock wool, polycrystal fiber like alumina, monocrystal like potassium titanate, or mixtures thereof.
  • the binder in the mica paper
    includes aramid fibrids.
  • the mica paper
    includes aramid floc.
  • One especially preferred embodiment
    is the use of aramid fibrids and floc made from poly(metaphenylene isophthalamide).
  • floc
    means fibers that have a short length and that are customarily used in the preparation of wet-laid sheets and/or papers. Typically, floc has a length of from about 3 to about 20 millimeters. A preferred length is from about 3 to about 7 millimeters. Floc is normally produced by cutting continuous fibers into the required lengths using well-known methods in the art.
  • aramid
    means aromatic polyamide, wherein at least 85% of the amide (—CONH—) linkages are attached directly to two aromatic rings.
  • additives
    can be used with the aramid and may be dispersed throughout the polymer structure. It has been found that up to as much as about 10 percent by weight of other polymeric material can be blended with the aramid. It has also been found that copolymers can be used having as much as about 10 percent of other diamines substituted for the diamine of the aramid or as much as about 10 percent of other diacid chlorides substituted for the diacid chloride of the aramid.
  • the preferred aramid
    is a meta-aramid.
  • the aramid polymer
    is considered a meta-aramid when the two rings or radicals are meta oriented with respect to each other along the molecular chain.
  • the preferred meta-aramid
    is poly(meta-phenylene isophthalamide)(MPD-I).
  • MPD-I
    poly(meta-phenylene isophthalamide)
  • the aramid floc
    could be a para-aramid or an aramid copolymer.
  • the aramid polymer
    is considered a para-aramid when the two rings or radicals are para oriented with respect to each other along the molecular chain.
  • Methods for making para-aramid fibers
    are generally disclosed in, for example, U.S. Pat. Nos. 3,869,430; 3,869,429; and 3,767,756.
  • One preferred para-aramid
    is poly(paraphenylene terephthalamide); and one preferred para-aramid copolymer is copoly(p-phenylene/3,4′diphenyl ester terephthalamide).
  • the preferred aramid floc
    is a meta-aramid floc, and especially preferred is floc made from the meta-aramid poly(meta-phenylene isophthalamide)(MPD-I).
  • fibrids
    means very small, nongranular, fibrous or film-like particles with at least one of their three dimensions being of minor magnitude relative to the largest dimension. These particles are prepared by precipitation of a solution of polymeric material using a non-solvent under high shear, as disclosed for example in U.S. Pat. Nos. 2,988,782 and 2,999,788.
  • Aramid fibrids
    are non-granular film-like particles of aromatic polyamide having a melting point or decomposition point above 320° C.
  • the preferred aramid fibrid
    is a meta-aramid fibrid, and especially preferred are fibrids made from the meta-aramid poly(meta-phenylene isophthalamide) (MPD-I).
  • Fibrids
    generally have a largest dimension length in the range of about 0.1 mm to about 1 mm with a length-to-width aspect ratio of about 5:1 to about 10:1.
  • the thickness dimension
    is on the order of a fraction of a micron, for example, about 0.1 microns to about 1.0 micron. While not required, it is preferred to incorporate aramid fibrids into the layers while the fibrids are in a never-dried state.
  • a preferred weight ratio of floc to fibrid
    is in a range from 0.5 to 4.0 and more preferably 0.8 to 2.0.
  • the mica paper
    can be made from a plurality of thin planar webs attached together.
  • face
    refers to either of the two major surfaces of the layer or paper (i.e., one side or the other of the layer or paper).
  • the mica paper
    will not be greater than 750 micrometers and more generally not greater than 500 micrometers.
  • the mica paper
    has a thickness of 250 micrometers or less.
  • the mica paper
    has a thickness of 130 micrometers or less; still other preferred embodiments have a thickness of 100 millimeters or less.
  • the mica paper
    can be made on a paper-making machine by providing the desired amount and proportion of mica and/or aramid solids to the headbox and then wet-laying as a web onto a papermaking wire.
  • the wet web
    can then be dried on dryer drums to form a paper.
  • the paper
    is then further calendared in the nip of a hot roll calendar under pressure and heat, or by other means, to consolidate and densify the paper into a layer having the desired thickness.
  • two or more lighter basis weight or thinner wet webs of the same composition
    can be made separately and then calendared and consolidated together into a single layer.
  • the support layer
    is demountably attached to the mica paper such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper.
  • the support layer
    can be demountably attached to the mica paper via a suitable adhesive that has cohesive or adhesive failure when a delamination force of 10 Newtons per 10 millimeters of width is placed on the adhesive at room temperature. This peel force or delamination force can be determined by measuring the force to pull the support layer from the mica paper at room temperature (20° C.) in a suitable measuring device such as an Instron®.
  • the support layer
    is initially separated from the mica paper, and the individual support layer and mica paper are placed in the opposing jaws of the Instron® (that is, a peel angle of 180°) and the force needed to separate the two layers is measured at a speed of 100 mm/min.
  • any adhesive that will both attach the support layer to the mica paper and then also allow the support layer to be peeled from the mica paper when a delamination force of 10 Newtons per 10 millimeters of width is placed on the adhesive
    can be used.
  • the inventors
    have found that a light application of Scotch® brand Spray Mount adhesive is a suitable adhesive, but other types of adhesives and amounts of adhesives could be used.
  • a suitable adhesive
    to a face of the support layer and then apply a face of the mica paper to the adhesive; or alternatively, apply a suitable adhesive to a face of the mica paper and then apply a face of the support layer to the adhesive.
  • the inventor
    has found that one suitable peelable support layer is a polyethylene coated polyester film having a nominal thickness of 0.0254 mm (sold under the Mylar® trademark by DuPont).
  • Other materials that are suitable as a support layer
    include a paper, a nonwoven fabric, or a woven fabric.
  • One method of applying the adhesive
    is to apply a spray a light even coat of adhesive one face of the support layer from a distance of about 6 to 8 inches. If necessary, the adhesive is then allowed to dry for a short time (up to 1 to 5 minutes) before the mica paper was then applied to the adhesive.
  • the thickness of the adhesive on the support layer
    is preferably 0.05 to 0.030 mm.
  • the two layers with the adhesive between
    can be pressed together, for example using a calendar nip, at a suitable pressure (preferably up to about 5.5 MPa) to product a final tape having the support layer demountably attached to the mica paper.
  • the support layer
    should be able to withstand a tensile force of at least 60 Newtons per 10 millimeters of width to ensure adequate tensioning of the mica paper and the support layer during the wrapping of the conductor. In some instances it is adequate they withstand a tensile force of at least 50 Newtons per 10 millimeters of width. Adequate tensioning of the tape and two layers is preferred to help avoid undesirable creases or wrinkles during winding. Further, for useful wrapping of conductors with tapes of the multilayer laminate structure, the laminate structure should preferably have a flexibility or stiffness of less than about 100 N/m, preferably less than about 50 N/m for use in high-speed machine tape-wrapping processes.
  • Basis Weight
    is measured according to ASTM D 645 and ASTM D 645-M-96 and reported in g/m 2 .
  • Thickness
    is measured according to ASTM D 646-96 and reported in mm.
  • Tensile Strength and initial elongation
    is measured according to ASTM D 828-93 with 2.54 cm wide test specimens and a gage length of 18 cm and reported in MPa.
  • Dielectric Strength
    is measured according to ASTM D 149-97A and reported in kV/mm.
  • Delamination Force
    (or Peel Adhesion) is measured according to ASTM D 3330 Method F and reported in N/10 mm.
  • Stiffness
    or the bending resistance is the maximum flexural load to bend a specimen divided by the length of test specimen (15 mm wide by 200 mm long) in accordance with IEC 60371-2 and reported in N/m.
  • a tape of mica paper with a peelable support layer
    was prepared by laminating one mica paper layer with one mechanical supporting layer.
  • the mica paper layer
    was made of 95% by weight mica (SRF-105T) from SWECO inc. (Korea) and 5% by weight meta-aramid fibrids.
  • the mechanical supporting (peelable) layer
    was a polyester film (Mylar® DuPont) having a 0.0254 mm thickness.
  • Scotch® Spray MountTM adhesive
    was applied on one face of the polyester film. A light even coat of adhesive was sprayed for 5 to 10 seconds from a distance of 6 to 8 inches from surface of the film and let dry for one minute.
  • this adhesive layer on the polyester film
    is approximately 0.020 mm.
  • the mica paper layer
    was laid on this sprayed adhesive surface of the polyester film the layers combined under a calendar nip pressure of 5.5 MPa to form a laminate structure. Then the laminate structure was slit into 15 mm wide tape.
  • a commercial grade calcined mica paper
    (SRF-105T) was prepared from SWECO Inc. (Korea). This mica paper was composed of 95% of calcined mica and 5% meta-aramid fibrids as a precursor of commercial glass backsheet and polyester film backed mica paper. This mica paper was slit into 15 mm wide tape. Properties of the resulting this tape are listed in the Table. Due to low mechanical strength, tapes kept breaking no matter what unwinding/rewinding tension was set.
  • a conductor
    was spirally wrapped with the tape of Example 1 in the following manner.
  • the cross sectional size of the rectangular conductor tested
    was 150 mm by 75 mm.
  • the mica paper surface
    was fixed with polyimide film tape (Nitto Denko P-224 AMB) on the aluminum conductor surface.
  • the tape
    was wrapped onto two sides of the conductor until 50% of the circumference of the rectangular aluminum conductor was covered, and then the initiation of the peeling of the support layer from the mica paper was begun.
  • the spiral wrapping of the conductor
    proceeded, with the next spiral wound around the conductor covering 50% of the prior wrapping (50% overwrap or half wrapping).
  • Tension
    was applied to the tape as needed up to 40 N per 10 mm of width to remove visible wrinkles and creases.
  • a layer of mica paper
    was successfully wrapped on the conductor.
  • a tape of mica paper on a peelable support layer
    was prepared as in Example 1 and again wound on a rectangular conductor as in Example 2, however the conductor was a smaller rectangular copper conductor having a cross sectional dimension of 13.3 mm by 3.3 mm. A slightly higher tension was applied as necessary, up to 50 N per 10 mm of width, to remove visible wrinkles and creases. A layer of mica paper was successfully wrapped on the conductor. The angle between mica paper and support layer while the support layer was being removed was about 90 degrees. Properties of the resulting tape are listed in the Table.
  • a tape of mica paper on a peelable support layer
    was prepared as in Example 1 and again wound on a conductor as in Example 2, but the conductor was an aluminum wire of round cross section having a diameter of 160 mm. In this instance, it was found that the tape only had to be wrapped onto the conductor until 25% of the circumference of the round cross section conductor prior to the initiation of the peeling of the support layer from the mica paper was begun.
  • Tension
    was applied to the tape as needed up to 40 N per 10 mm of width to remove visible wrinkles and creases.
  • a layer of mica paper
    was successfully wrapped on the conductor. The angle between mica paper and support layer while the support layer was being removed was about 90 degrees. Properties of the resulting tape are listed in the Table.

Images (2)

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • H01B3/485Other fibrous materials fabric


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/02Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica the layer of fibres or particles being impregnated or embedded in a plastic substance

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 – B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 – B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 – B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 – B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 – B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/06Layered products comprising a layer of a particular substance not covered by groups B32B11/00 – B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/08Insulating conductors or cables by winding

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0241Disposition of insulation comprising one or more helical wrapped layers of insulation

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/40Insulated conductors or cables characterised by their form with arrangements for facilitating mounting or securing

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • H02K15/105Applying solid insulation to windings, stators or rotors to the windings

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 – B32B2313/04
    • B32B2315/10Mica


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes


    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment


    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/251Mica


    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide


    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3927Including a paper or wood pulp layer
    • Y10T442/3935Mica paper layer


Landscapes

  • Engineering & Computer Science
    (AREA)
  • Power Engineering
    (AREA)
  • Physics & Mathematics
    (AREA)
  • Spectroscopy & Molecular Physics
    (AREA)
  • Ceramic Engineering
    (AREA)
  • Textile Engineering
    (AREA)
  • Inorganic Chemistry
    (AREA)
  • Chemical & Material Sciences
    (AREA)
  • Manufacturing & Machinery
    (AREA)
  • Insulating Bodies
    (AREA)
  • Laminated Bodies
    (AREA)
  • Organic Insulating Materials
    (AREA)
  • Manufacture Of Motors, Generators
    (AREA)
  • Insulation, Fastening Of Motor, Generator Windings
    (AREA)
  • Paper
    (AREA)

Abstract

A tape having a first face comprising a continuous surface of mica paper and a second face comprising a support layer, wherein the mica paper comprises 70 to 99 weight percent mica and 1 to 30 weight percent binder and the support layer comprises a film, a paper, a nonwoven fabric, or a woven fabric; wherein the initial elongation of the support layer is equal to or less than the initial elongation of the mica paper; and wherein the support layer is demountably attached to the mica paper such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper.

Description

BACKGROUND OF THE INVENTIONField of the Invention

The present invention relates to a method of applying a mica paper as insulation to an electrical conductor and a mica paper tape useful in such method.

Description of the Related Art

High mica-content papers are useful as insulation in motors, generators and inverters. Mica papers with higher content mica typically have a mechanical supporting layer such as a glass cloth or polyester film to compensate for mechanical weakness in the mica paper associated with the high mica content. However the mechanical supporting layer is undesirable in use in electrical equipment because many insulation failures are attributable to that mechanical support layer and its lower corona resistance, different thermal expansion, and different conductivity.
It is common to spirally or helically wrap electrical insulation, in the form of a tape, around a conductor using a machine especially designed to maintain the tension on the tape while rapidly wrapping the tape around the conductor. These machines generally require the use of mica paper tapes with a mechanical supporting layer, therefore the mechanical supporting layer with its less than desirable electrical performance becomes a part of the insulation.
Therefore there is a need for a method of successfully wrapping a mica paper around an electrical conductor wherein it is not required to include the mechanical supporting layer in the electrical insulation.

SUMMARY OF THE INVENTION

This invention relates to a method of applying a mica paper around an electrical conductor, the process including
    • i) a tape, the tape having a face comprising a continuous surface of the mica paper and a face comprising a support layer, the support layer being demountably attached to the mica paper; and
    • ii) an electrical conductor, the conductor having a surface having a length and a circumference perpendicular to that length;

      the method comprising the steps, in order, of:
    • a. attaching the face of the tape comprising the continuous surface of mica paper to the conductor at an attachment point on the surface of the conductor;
    • b. winding the tape around the conductor, the mica paper being in contact with the conductor surface, until the tape has been wound to a point of winding that is at least 25 percent of the conductor circumference from the attachment point on the surface of the conductor; and then
    • c. initiating a continuous removal of the support layer from the tape, starting at the attachment point, the mica paper remaining in contact with the surface of the conductor; and
    • d. continuing to wind the tape around the conductor, the mica paper being in at least partial contact with the conductor surface and continuously contacting the surface at a winding point, while simultaneously removing the support layer at a removal point until a desired amount of conductor surface is completely covered with at least one layer of the mica paper,

      with the proviso that the removal point is maintained at least 25 percent of the conductor circumference behind the winding point until the desired amount of conductor surface is completely covered.
This invention also relates to a tape having a first face comprising a continuous surface of mica paper and a second face comprising a support layer, wherein the mica paper comprises 70 to 99 weight percent mica and 1 to 30 weight percent binder and the support layer comprises a film, a paper, a nonwoven fabric, or a woven fabric; wherein the initial elongation of the support layer is equal to or less than the initial elongation of the mica paper; and wherein the support layer is demountably attached to the mica paper such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1-4 illustrate certain aspects of the method of applying an insulation tape to a conductor having a rectangular cross section.

DETAILED DESCRIPTION OF THE INVENTION

This invention relates to a method of applying insulation to an electrical conductor with use of mica paper in combination with a peelable support layer. Such peelable support layer is temporarily used to support the mica paper under tension during a winding process along a length of an electrical conductor and then the peelable support layer is removed as taping along an electrical conductor proceeds. This method can result with only mica paper wrapped on the conductor without any other additional layer present.
The mica papers are useful in many kinds of electrical components but more particularly in rotating equipment such as low voltages (nominal voltage below 1000 V). Examples of electrical components include motors, generators and invertors. A preferred electrical conductor is a coil to which mica paper is applied. The mica application method is useful for electrical insulation having properties of thermal stability and corona discharge resistance while retaining acceptable mechanical strength.
Mica paper as used herein means a paper containing the inorganic material mica. Illustratively the mica content can be at least 45% by weight; however, the most useful electrical properties are present when the mica paper has at least 70% by mica, and preferably when the mica paper has at least 85 or 90 percent by weight mica. The term “mica”, as used herein, is used in its conventional meaning directed to form of a silicate mineral. Mica particles, normally in the form of a flake of various types, such as muscovite or phlogopite or blends thereof, can be used; however, mica of the muscovite type is preferred. A preferred type of mica for electrical insulation is muscovite with optionally phlogopite present.
As the mica content in a paper increases the mechanical strength and cohesiveness of the paper generally decreases. Additives such as binders typically add mechanical strength to the papers but such additives decrease as the mica content increases.
A preferred method of applying a mica paper with a peelable layer to an electrical conductor is through use of a high speed machine for wrapping a material around a surface. Such high speed machines are well known. However it is understood that the method disclose herein can be done by hand, which means a person would apply and wrap the mica paper around and along an electrical conductor.
As employed herein, the term peelable support layer denotes that such support layer can be removed, i.e. separated, by hand or machine from a mica paper. A person holding a roll of the mica paper contacting the peelable support layer is able to remove the peelable support layer without damaging the mica paper. As such, the support layer is said to be demountably attached to the mica paper. By demountably attached it is meant the support layer is peelable from the mica paper, such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper.
Further, the initial elongation of the support layer is equal to or less than the initial elongation of the mica paper. The inventors have found that surprisingly if the support layer has more elongation or stretch than the mica paper, it is difficult to remove the support layer from the mica paper without tearing the mica paper.
Suitable examples of a peelable layer include a film, a paper, a nonwoven fabric, or a woven fabric; specific examples include cellulosic paper, polymeric film, woven textile, nonwoven structure, aramid paper and metal foil.
This invention relates to a method of applying a mica paper around an electrical conductor, the process including
    • i) a tape, the tape having a face comprising a continuous surface of the mica paper and a face comprising a support layer, the support layer being demountably attached to the mica paper; and
    • ii) an electrical conductor, the conductor having a surface having a length and a circumference perpendicular to that length;

      the method comprising the steps, in order, of:
    • a. attaching the face of the tape comprising the continuous surface of mica paper to the conductor at an attachment point on the surface of the conductor;
    • b. winding the tape around the conductor, the mica paper being in contact with the conductor surface, until the tape has been wound to a point of winding that is at least 25 percent of the conductor circumference from the attachment point on the surface of the conductor; and then
    • c. initiating a continuous removal of the support layer from the tape, starting at the attachment point, the mica paper remaining in contact with the surface of the conductor; and
    • d. continuing to wind the tape around the conductor, the mica paper being in at least partial contact with the conductor surface and continuously contacting the surface at a winding point, while simultaneously removing the support layer at a removal point until a desired amount of conductor surface is completely covered with at least one layer of the mica paper,

      with the proviso that the removal point is maintained at least 25 percent of the conductor circumference behind the winding point until the desired amount of conductor surface is completely covered.
The face of the tape comprising the continuous surface of mica is attached to the conductor at an attachment point the surface of the conductor. This can be achieved by applying a front edge or end of the tape to the electrical conductor wherein the front edge or end of the continuous surface of the mica paper adheres to the conductor by use of an adhesive either (i) on the electrical conductor or (ii) on the front edge or end of the surface of the mica paper. It is understood that in all cases an adhesive need not be on an edge, the front edge of the conductor, but will be on the end of the mica paper which contacts the electrical conductor. It is necessary for the mica paper to remain in contact with the electrical conductor as winding tension is applied to the tape.
The tape is then wound around the conductor, the mica paper being in contact with the conductor surface, until the tape has been wound to a point of winding that is at least 25 percent of the conductor circumference from the attachment point on the surface of the conductor; and then initiating a continuous removal of the support layer from the tape, starting at the attachment point, the mica paper remaining in contact with the surface of the conductor. The continuous removal of the support layer can be initiated when there is this distance between the initial attachment point and the winding point because the conductor being wrapped provides adequate support of the mica paper on the conductor. A distance between the initial attachment point (or the removal point) and the winding point of at least 25 percent of the conductor circumference is the minimum practical distance, and is useful when the conductor has generally a round or oval cross sectional shape. In one embodiment, the distance between the initial attachment point (or the removal point) and the winding point is at least 50 percent of the conductor circumference. This is especially is preferred when the conductor has a generally square or rectangular cross sectional shape. This allows the tape to be wrapped around a rectangular corner of the conductor to provide additional support prior to the removal of the support layer.
The wrapping technique on a conductor of rectangular cross section is illustrated in FIGS. 1-4. Referring to FIG. 1, electrical insulation tape2 having a support layer 3 and mica paper 4 is shown attached to conductor1. The end of the insulation tape forms attachment point5 on the surface of the conductor. In FIG. 2, the tape is wound around the conductor, and as it is wound, the leading edge of the contact between the tape and the conductor is the winding point 6. As indicated, the point7 on the conductor is the point 50% of the conductor circumference from the attachment point5, at which point the support layer can start to be removed from the mica paper at the attachment point5. In FIG. 3, the winding has progressed, with the winding point now shown at 8, and the removal point9 being 50% of the conductor circumference behind the winding point. The support layer10 has now been peeled from the mica paper from the initial attachment point to the removal point9. FIG. 4 further illustrates the wrapping, with the winding point8 and removal point9 having progressed around the surface of the conductor. The wrapping continues around the conductor in this manner.
The maximum distance between the attachment point (or removal point) and the winding point is necessarily less than 100 percent of the circumference of the conductor, otherwise the support layer would be wound onto the conductor. From a practical sense, it is believed practical maximum distance between the attachment point (or removal point) and the winding point is 90% percent of the circumference of the conductor.
The method continues by continuing to wind the tape around the conductor, the mica paper being in at least partial contact with the conductor surface and continuously contacting the surface at a winding point, while simultaneously removing the support layer at a removal point until a desired amount of conductor surface is completely covered with at least one layer of the mica paper, with the proviso that the removal point, where the support layer is removed from the mica paper, is maintained at least 25 percent of the conductor circumference behind the winding point until the desired amount of conductor surface is completely covered.
Preferably the tape is helically or spirally wound around the conductor. Further, preferably at least a portion of the tape is wound with one layer of mica paper at least partially overlapping a prior-wrapped mica paper layer. Typically an overlap of the wrapped tape is preferred, with an overlap of about 50% of the width of the tape being most preferred.
For the purposes herein, the words “surface of conductor” is meant to include the outer surface of an electrical conductor wherein an insulation wrap is desired. The “surface of the conductor is not limited to only a bare metal surface of the conductor, but is understood to also include the outer surface of a conductor that might have had a coating on the metal surface or other material applied to the metal surface, or even another form of insulation applied to the conductor.
One preferred tape for winding on conductors is a tape having a layer of continuous mica paper in combination with a peelable support layer. That is, a tape having a first face comprising a continuous surface of mica paper and a second face comprising a support layer, wherein the mica paper comprises 70 to 99 weight percent mica and 1 to 30 weight percent binder and the support layer comprises a film, a paper, a nonwoven fabric, or a woven fabric; wherein the initial elongation of the support layer is equal to or less than the initial elongation of the mica paper; and wherein the support layer is demountably attached to the mica paper such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper.
In some preferred embodiments, the layer of mica paper has 90 to 99 weight percent mica, and in some specialized embodiments the mica paper had 95 to 99 weight percent mica. The mica paper can contain one or more additives. Typically such additives include the binder to add cohesive strength to the mica paper, and other materials such as fibers or floc.
In some embodiments the mica paper further includes cellulose, acetate, acrylic, polyolefin, polyamide, polyester fiber, glass fiber, rock wool, polycrystal fiber like alumina, monocrystal like potassium titanate, or mixtures thereof. In some preferred embodiments the binder in the mica paper includes aramid fibrids. In some preferred embodiments the mica paper includes aramid floc. One especially preferred embodiment is the use of aramid fibrids and floc made from poly(metaphenylene isophthalamide).
The term floc, as used herein, means fibers that have a short length and that are customarily used in the preparation of wet-laid sheets and/or papers. Typically, floc has a length of from about 3 to about 20 millimeters. A preferred length is from about 3 to about 7 millimeters. Floc is normally produced by cutting continuous fibers into the required lengths using well-known methods in the art.
The term aramid, as used herein, means aromatic polyamide, wherein at least 85% of the amide (—CONH—) linkages are attached directly to two aromatic rings. Optionally, additives can be used with the aramid and may be dispersed throughout the polymer structure. It has been found that up to as much as about 10 percent by weight of other polymeric material can be blended with the aramid. It has also been found that copolymers can be used having as much as about 10 percent of other diamines substituted for the diamine of the aramid or as much as about 10 percent of other diacid chlorides substituted for the diacid chloride of the aramid.
The preferred aramid is a meta-aramid. The aramid polymer is considered a meta-aramid when the two rings or radicals are meta oriented with respect to each other along the molecular chain. The preferred meta-aramid is poly(meta-phenylene isophthalamide)(MPD-I). U.S. Pat. Nos. 3,063,966; 3,227,793; 3,287,324; 3,414,645; and 5,667,743 are illustrative of useful methods for making aramid fibers that could be used to make aramid floc.
Alternatively, the aramid floc could be a para-aramid or an aramid copolymer. The aramid polymer is considered a para-aramid when the two rings or radicals are para oriented with respect to each other along the molecular chain. Methods for making para-aramid fibers are generally disclosed in, for example, U.S. Pat. Nos. 3,869,430; 3,869,429; and 3,767,756. One preferred para-aramid is poly(paraphenylene terephthalamide); and one preferred para-aramid copolymer is copoly(p-phenylene/3,4′diphenyl ester terephthalamide). The preferred aramid floc is a meta-aramid floc, and especially preferred is floc made from the meta-aramid poly(meta-phenylene isophthalamide)(MPD-I).
The term fibrids, as used herein, means very small, nongranular, fibrous or film-like particles with at least one of their three dimensions being of minor magnitude relative to the largest dimension. These particles are prepared by precipitation of a solution of polymeric material using a non-solvent under high shear, as disclosed for example in U.S. Pat. Nos. 2,988,782 and 2,999,788. Aramid fibrids are non-granular film-like particles of aromatic polyamide having a melting point or decomposition point above 320° C. The preferred aramid fibrid is a meta-aramid fibrid, and especially preferred are fibrids made from the meta-aramid poly(meta-phenylene isophthalamide) (MPD-I).
Fibrids generally have a largest dimension length in the range of about 0.1 mm to about 1 mm with a length-to-width aspect ratio of about 5:1 to about 10:1. The thickness dimension is on the order of a fraction of a micron, for example, about 0.1 microns to about 1.0 micron. While not required, it is preferred to incorporate aramid fibrids into the layers while the fibrids are in a never-dried state.
In the event a combination of floc and fibrid is employed for the aramid, a preferred weight ratio of floc to fibrid is in a range from 0.5 to 4.0 and more preferably 0.8 to 2.0.
The mica paper can be made from a plurality of thin planar webs attached together. As used herein, the term “face” refers to either of the two major surfaces of the layer or paper (i.e., one side or the other of the layer or paper).
If the mica paper is too thick, it will interfere with the winding process. Preferably the mica paper will not be greater than 750 micrometers and more generally not greater than 500 micrometers. In some other embodiments the mica paper has a thickness of 250 micrometers or less. In one preferred embodiment the mica paper has a thickness of 130 micrometers or less; still other preferred embodiments have a thickness of 100 millimeters or less.
The mica paper can be made on a paper-making machine by providing the desired amount and proportion of mica and/or aramid solids to the headbox and then wet-laying as a web onto a papermaking wire. The wet web can then be dried on dryer drums to form a paper. Preferably the paper is then further calendared in the nip of a hot roll calendar under pressure and heat, or by other means, to consolidate and densify the paper into a layer having the desired thickness. If desired, two or more lighter basis weight or thinner wet webs of the same composition can be made separately and then calendared and consolidated together into a single layer.
The support layer is demountably attached to the mica paper such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper. The support layer can be demountably attached to the mica paper via a suitable adhesive that has cohesive or adhesive failure when a delamination force of 10 Newtons per 10 millimeters of width is placed on the adhesive at room temperature. This peel force or delamination force can be determined by measuring the force to pull the support layer from the mica paper at room temperature (20° C.) in a suitable measuring device such as an Instron®. To measure the delamination force, the support layer is initially separated from the mica paper, and the individual support layer and mica paper are placed in the opposing jaws of the Instron® (that is, a peel angle of 180°) and the force needed to separate the two layers is measured at a speed of 100 mm/min.
Any adhesive that will both attach the support layer to the mica paper and then also allow the support layer to be peeled from the mica paper when a delamination force of 10 Newtons per 10 millimeters of width is placed on the adhesive can be used. The inventors have found that a light application of Scotch® brand Spray Mount adhesive is a suitable adhesive, but other types of adhesives and amounts of adhesives could be used.
To create a tape having a support layer is demountably attached to a mica paper layer, it is convenient to apply a suitable adhesive to a face of the support layer and then apply a face of the mica paper to the adhesive; or alternatively, apply a suitable adhesive to a face of the mica paper and then apply a face of the support layer to the adhesive. The inventor has found that one suitable peelable support layer is a polyethylene coated polyester film having a nominal thickness of 0.0254 mm (sold under the Mylar® trademark by DuPont). Other materials that are suitable as a support layer include a paper, a nonwoven fabric, or a woven fabric.
One method of applying the adhesive is to apply a spray a light even coat of adhesive one face of the support layer from a distance of about 6 to 8 inches. If necessary, the adhesive is then allowed to dry for a short time (up to 1 to 5 minutes) before the mica paper was then applied to the adhesive. The thickness of the adhesive on the support layer is preferably 0.05 to 0.030 mm.
Additionally the two layers with the adhesive between can be pressed together, for example using a calendar nip, at a suitable pressure (preferably up to about 5.5 MPa) to product a final tape having the support layer demountably attached to the mica paper.
In addition it is preferable that the support layer should be able to withstand a tensile force of at least 60 Newtons per 10 millimeters of width to ensure adequate tensioning of the mica paper and the support layer during the wrapping of the conductor. In some instances it is adequate they withstand a tensile force of at least 50 Newtons per 10 millimeters of width. Adequate tensioning of the tape and two layers is preferred to help avoid undesirable creases or wrinkles during winding. Further, for useful wrapping of conductors with tapes of the multilayer laminate structure, the laminate structure should preferably have a flexibility or stiffness of less than about 100 N/m, preferably less than about 50 N/m for use in high-speed machine tape-wrapping processes.

Test Methods

Basis Weight is measured according to ASTM D 645 and ASTM D 645-M-96 and reported in g/m2.
Thickness is measured according to ASTM D 646-96 and reported in mm.
Tensile Strength and initial elongation is measured according to ASTM D 828-93 with 2.54 cm wide test specimens and a gage length of 18 cm and reported in MPa.
Dielectric Strength is measured according to ASTM D 149-97A and reported in kV/mm.
Delamination Force (or Peel Adhesion) is measured according to ASTM D 3330 Method F and reported in N/10 mm.
Stiffness (flexibility) or the bending resistance is the maximum flexural load to bend a specimen divided by the length of test specimen (15 mm wide by 200 mm long) in accordance with IEC 60371-2 and reported in N/m.

EXAMPLESExample 1

A tape of mica paper with a peelable support layer was prepared by laminating one mica paper layer with one mechanical supporting layer. The mica paper layer was made of 95% by weight mica (SRF-105T) from SWECO inc. (Korea) and 5% by weight meta-aramid fibrids. The mechanical supporting (peelable) layer was a polyester film (Mylar® DuPont) having a 0.0254 mm thickness. To create instant, repositionable sticky surface on the polyester film, Scotch® Spray Mount™ adhesive was applied on one face of the polyester film. A light even coat of adhesive was sprayed for 5 to 10 seconds from a distance of 6 to 8 inches from surface of the film and let dry for one minute. The thickness of this adhesive layer on the polyester film is approximately 0.020 mm. The mica paper layer was laid on this sprayed adhesive surface of the polyester film the layers combined under a calendar nip pressure of 5.5 MPa to form a laminate structure. Then the laminate structure was slit into 15 mm wide tape.

Comparative Example A

A commercial grade calcined mica paper (SRF-105T) was prepared from SWECO Inc. (Korea). This mica paper was composed of 95% of calcined mica and 5% meta-aramid fibrids as a precursor of commercial glass backsheet and polyester film backed mica paper. This mica paper was slit into 15 mm wide tape. Properties of the resulting this tape are listed in the Table. Due to low mechanical strength, tapes kept breaking no matter what unwinding/rewinding tension was set.

Example 2

A conductor was spirally wrapped with the tape of Example 1 in the following manner. The cross sectional size of the rectangular conductor tested was 150 mm by 75 mm. At the starting point of the winding of this tape, the mica paper surface was fixed with polyimide film tape (Nitto Denko P-224 AMB) on the aluminum conductor surface. The tape was wrapped onto two sides of the conductor until 50% of the circumference of the rectangular aluminum conductor was covered, and then the initiation of the peeling of the support layer from the mica paper was begun. The spiral wrapping of the conductor proceeded, with the next spiral wound around the conductor covering 50% of the prior wrapping (50% overwrap or half wrapping). Tension was applied to the tape as needed up to 40 N per 10 mm of width to remove visible wrinkles and creases. A layer of mica paper was successfully wrapped on the conductor. The angle between mica paper and support layer while the support layer was being removed was about 90 degrees. Properties of the resulting tape are listed in the Table.

Example 3

A tape of mica paper on a peelable support layer was prepared as in Example 1 and again wound on a rectangular conductor as in Example 2, however the conductor was a smaller rectangular copper conductor having a cross sectional dimension of 13.3 mm by 3.3 mm. A slightly higher tension was applied as necessary, up to 50 N per 10 mm of width, to remove visible wrinkles and creases. A layer of mica paper was successfully wrapped on the conductor. The angle between mica paper and support layer while the support layer was being removed was about 90 degrees. Properties of the resulting tape are listed in the Table.

Example 4

A tape of mica paper on a peelable support layer was prepared as in Example 1 and again wound on a conductor as in Example 2, but the conductor was an aluminum wire of round cross section having a diameter of 160 mm. In this instance, it was found that the tape only had to be wrapped onto the conductor until 25% of the circumference of the round cross section conductor prior to the initiation of the peeling of the support layer from the mica paper was begun.
Tension was applied to the tape as needed up to 40 N per 10 mm of width to remove visible wrinkles and creases. A layer of mica paper was successfully wrapped on the conductor. The angle between mica paper and support layer while the support layer was being removed was about 90 degrees. Properties of the resulting tape are listed in the Table.
TABLE
Before Winding
(mica paper + support layer)
Thickness of After Winding
bare wire (mica only)
Basis Tensile long/short side Overall Dielectric
Weight Strength or diameter thickness Strength
Example (g/m2) (MPa) (mm) (mm) (kV/mm)
A 105 <10 150/75 NA* NA*
2 125 117 150/75 150.2/75.3 19.1
3 155 115 150/75 133.7/3.6  21.2
4 155 115 160 160.2 22.4
*Tape could not be wound.

Claims (5)

What is claimed is:

1. A tape having a first face comprising a continuous surface of mica paper and a second face comprising a support layer,

wherein the mica paper consists of 70 to 99 weight percent mica and 1 to 30 weight percent of a binder of aramid fibrids, and optionally, additive fibers or floc;
and the support layer comprises a film, a paper, a nonwoven fabric, or a woven fabric;
wherein the initial elongation of the support layer is equal to or less than the initial elongation of the mica paper; and
wherein the support layer is demountably attached to the mica paper such that when a delamination force of 10 N/10 mm or less is imposed on the support layer it can be separated from the mica paper,
wherein the support layer can withstand a tensile force of at least 50 Newtons per 10 millimeters of width.

2. The tape of claim 1 wherein the additive fibers or floc includes aramid, cellulose, acetate, acrylic, polyolefin, polyamide, polyester, or mixtures thereof.

3. The tape of claim 2, wherein the additive fibers or floc is aramid floc.

4. The tape of claim 3, wherein the aramid fibrids and floc are made from poly(metaphenylene isophthalamide).

5. The tape of claim 1 wherein the additive fibers or floc includes glass fiber, rock wool, alumina polycrystal fiber, potassium titanate monocrystal fiber, or mixtures thereof.

US15/928,420
2015-06-12
2018-03-22
Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same

Active
2036-11-20

US11027520B2


Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/928,420


US11027520B2

2015-06-12 2018-03-22 Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562174549P

2015-06-12 2015-06-12
US15/146,077

US9972419B2

2015-06-12 2016-05-04 Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same
US15/928,420

US11027520B2

2015-06-12 2018-03-22 Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/146,077
Division

US9972419B2

2015-06-12 2016-05-04 Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same

Publications (2)

Publication Number Publication Date
US20180211745A1


US20180211745A1

2018-07-26
US11027520B2

true

US11027520B2

2021-06-08
US15/928,420
2015-06-12
2018-03-22
Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same

Active
2036-11-20

US11027520B2

Family

ID=55971212

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/146,077
Active
2036-12-03

US9972419B2

2015-06-12 2016-05-04 Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same
US15/928,420
Active
2036-11-20

US11027520B2

2015-06-12 2018-03-22 Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/146,077
Active
2036-12-03

US9972419B2

2015-06-12 2016-05-04 Method of wrapping mica paper on an electrical conductor and mica paper tape suitable for same

Country Status (6)

Country Link
US
(2)

US9972419B2

EP
(1)


EP3308384B1

JP
(2)


JP6802812B2

KR
(2)


KR102614903B1

CN
(1)


CN107710337B

WO
(1)


WO2016200512A1

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title

US11509016B2


*

2019-03-15 2022-11-22 Dupont Safety & Construction, Inc. Papers useful as thermal insulation and flame barriers for battery cells

EP3967857B1


*

2020-01-14 2024-09-04 Hidria d.o.o. Electrical connection

EP4381130A1


*

2021-08-03 2024-06-12 DuPont Safety & Construction, Inc. Low-shedding aramid paper containing mica

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title

US2868269A


*

1956-02-21 1959-01-13 Gen Electric Process of treating sheet material and product resulting therefrom

US2988782A

1958-12-09 1961-06-20 Du Pont Process for producing fibrids by precipitation and violent agitation

US2999788A

1958-12-09 1961-09-12 Du Pont Synthetic polymer fibrid paper

US3063966A

1958-02-05 1962-11-13 Du Pont Process of making wholly aromatic polyamides

US3101845A


*

1960-09-26 1963-08-27 Minnesota Mining & Mfg Stretchable mica-containing insulating sheet materials and products insulated therewith

US3227793A

1961-01-23 1966-01-04 Celanese Corp Spinning of a poly(polymethylene) terephthalamide

US3287324A

1965-05-07 1966-11-22 Du Pont Poly-meta-phenylene isophthalamides

US3414645A

1964-06-19 1968-12-03 Monsanto Co Process for spinning wholly aromatic polyamide fibers

US3623924A

1969-12-15 1971-11-30 Avco Corp Electrically insulating tape and method of applying same

US3767756A

1972-06-30 1973-10-23 Du Pont Dry jet wet spinning process

US3869429A

1971-08-17 1975-03-04 Du Pont High strength polyamide fibers and films

US3869430A

1971-08-17 1975-03-04 Du Pont High modulus, high tenacity poly(p-phenylene terephthalamide) fiber

US4060451A


*

1972-03-31 1977-11-29 Teijin Limited Polyamide-imide and mica pulp particles and paper-like sheets made therefrom

US4606785A

1984-11-15 1986-08-19 Westinghouse Electric Corp. Simplified method of making high strength resin bonded mica tape

US4704322A

1986-09-22 1987-11-03 Essex Group, Inc. Resin rich mica tape

US5618891A

1995-03-29 1997-04-08 General Electric Co. Solventless resin composition having minimal reactivity at room temperature

US5667743A

1996-05-21 1997-09-16 E. I. Du Pont De Nemours And Company Wet spinning process for aramid polymer containing salts

US20030035960A1

2002-02-25 2003-02-20 Hitachi, Ltd. Insulating material and electric machine winding and method for manufacturing the same

US6991845B2


*

2002-12-13 2006-01-31 E. I. Du Pont De Nemours And Company Mica sheet and tape

US20130196161A1


*

2011-08-03 2013-08-01 Ei Du Pont De Nemours And Company Laminates useful for electrical insulation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title

JPS5235762B2


*

1972-03-31 1977-09-10

JPS5951104B2


*

1982-01-25 1984-12-12 株式会社東芝 Manufacturing method of mica sheet or mica tape


US20120312366A1


*

2010-12-22 2012-12-13 E. I. Du Pont De Nemours And Company Fire resistant back-sheet for photovoltaic module

GB2492087B


*

2011-06-20 2018-09-19 Tyco Electronics Ltd Uk High temperature insulating tape and wire or cable sheathed therewith

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title

US2868269A


*

1956-02-21 1959-01-13 Gen Electric Process of treating sheet material and product resulting therefrom

US3063966A

1958-02-05 1962-11-13 Du Pont Process of making wholly aromatic polyamides

US2988782A

1958-12-09 1961-06-20 Du Pont Process for producing fibrids by precipitation and violent agitation

US2999788A

1958-12-09 1961-09-12 Du Pont Synthetic polymer fibrid paper

US3101845A


*

1960-09-26 1963-08-27 Minnesota Mining & Mfg Stretchable mica-containing insulating sheet materials and products insulated therewith

US3227793A

1961-01-23 1966-01-04 Celanese Corp Spinning of a poly(polymethylene) terephthalamide

US3414645A

1964-06-19 1968-12-03 Monsanto Co Process for spinning wholly aromatic polyamide fibers

US3287324A

1965-05-07 1966-11-22 Du Pont Poly-meta-phenylene isophthalamides

US3623924A

1969-12-15 1971-11-30 Avco Corp Electrically insulating tape and method of applying same

US3869429A

1971-08-17 1975-03-04 Du Pont High strength polyamide fibers and films

US3869430A

1971-08-17 1975-03-04 Du Pont High modulus, high tenacity poly(p-phenylene terephthalamide) fiber

US4060451A


*

1972-03-31 1977-11-29 Teijin Limited Polyamide-imide and mica pulp particles and paper-like sheets made therefrom

US3767756A

1972-06-30 1973-10-23 Du Pont Dry jet wet spinning process

US4606785A

1984-11-15 1986-08-19 Westinghouse Electric Corp. Simplified method of making high strength resin bonded mica tape

US4704322A

1986-09-22 1987-11-03 Essex Group, Inc. Resin rich mica tape

US5618891A

1995-03-29 1997-04-08 General Electric Co. Solventless resin composition having minimal reactivity at room temperature

US5667743A

1996-05-21 1997-09-16 E. I. Du Pont De Nemours And Company Wet spinning process for aramid polymer containing salts

US20030035960A1

2002-02-25 2003-02-20 Hitachi, Ltd. Insulating material and electric machine winding and method for manufacturing the same

US6991845B2


*

2002-12-13 2006-01-31 E. I. Du Pont De Nemours And Company Mica sheet and tape

US20130196161A1


*

2011-08-03 2013-08-01 Ei Du Pont De Nemours And Company Laminates useful for electrical insulation

Also Published As

Publication number Publication date

JP2021015802A

2021-02-12

JP7011698B2

2022-01-27

KR102614903B1

2023-12-19

US9972419B2

2018-05-15

CN107710337B

2019-11-26

EP3308384B1

2019-04-24

KR20230062657A

2023-05-09

CN107710337A

2018-02-16

US20180211745A1

2018-07-26

JP6802812B2

2020-12-23

US20160365173A1

2016-12-15

KR102575285B1

2023-09-07

JP2018528566A

2018-09-27

EP3308384A1

2018-04-18

KR20180018534A

2018-02-21

WO2016200512A1

2016-12-15

Similar Documents

Publication Publication Date Title


JP7011698B2

A method of wrapping mica paper on an electric conductor and a mica paper tape suitable for the same method.



US10186353B2

Corona-resistant resin-compatible laminates


KR101321206B1

Insulated power cable


JP7414834B2

Flame retardant insulator suitable for battery cells



BR112012031000B1

MULTILAYER STRUCTURE FOR ELECTRICAL INSULATION



JP5091309B2

Laminated electrical insulation part



JP7003060B2

Resin compatible laminated structure



JPH10199338A

Manufacture of electric insulating laminated paper, and oil imersed power cable using the laminated paper


KR100465363B1

Electrically insulated laminates, methods of making them and oil impregnated power cables



KR200323162Y1

The structure of insulating paper


TW201900965A

Textile flat structure for electrical insulation

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text:
ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text:
DOCKETED NEW CASE – READY FOR EXAMINATION

AS Assignment

Owner name:
DUPONT SAFETY & CONSTRUCTION, INC., DELAWARE

Free format text:
ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:E. I. DU PONT DE NEMOURS AND COMPANY;REEL/FRAME:051180/0648

Effective date:
20190617

STPP Information on status: patent application and granting procedure in general

Free format text:
NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text:
RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text:
DOCKETED NEW CASE – READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text:
NOTICE OF ALLOWANCE MAILED — APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text:
PUBLICATIONS — ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text:
PUBLICATIONS — ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text:
PATENTED CASE

Share

Share on facebook
Share on twitter
Share on linkedin

About Us

At DataMica Technologies, we’re accelerating ideas to solve some of the world’s biggest challenges by bringing together the brightest, most innovative minds across battery thermal runaway protection, EV busbar HV & HT insulation and fire resistant for special cable.

Follow Us

Have a question?

Give your problem to an engineer of DataMica R&D.